Examination of the role of cadherin/beta-catenin adhesion complexes in the development and maintenance of synaptic junctions

Synapses of the central nervous system—junctions across which a nerve impulse passes from neuron to neuron—are highly-specialized regions of cell-to-cell contact. Deficiencies in synaptic function are central in many psychiatric and neurodegenerative diseases such as schizophrenia, Alzheimer’s, Parkinson’s and Huntington’s disease. Cell adhesion molecules, localized at synapses, are believed to have an important role in the regulation of synapse formation, maintenance and function. Dr. Shernaz Bamji has previously shown that cadherin and beta-catenin adhesion complexes act to recruit and tether synaptic vesicles to presynaptic compartments, and that transient disruptions of these adhesion complexes are important for the sprouting of new synapses. She is now further investigating the cellular and molecular mechanisms by which synaptic cell adhesion molecules regulate the formation, stability, and elimination of CNS synapses. . Understanding the underpinnings of these mechanisms may lead to the identification of new targets for therapeutic intervention in psychiatric and neurodegenerative diseases.