Increased nitric oxide bioavailability through regulated eNOS-Caveolin-1 antagonism

Hypertension (high blood pressure) has a direct link to aging and is a major risk factor for atherosclerosis (narrowing and hardening of the arteries over time), stroke, heart attack and chronic renal failure. All known cardiovascular diseases, including hypertension, have in common a disease called endothelial dysfunction. The endothelium is a layer of cells that line the cavities of the heart, as well as the blood and lymph vessels. With endothelial disease, these cells do not function as well. Aging is known to induce and aggravate endothelial dysfunction, suggesting that endothelial dysfunction is unavoidable. One of the hallmarks of endothelial dysfunction is a decrease in the synthesis and availability of nitric oxide, which promotes dilation or relaxation of the blood vessels. Under normal conditions, nitric oxide significantly contributes to resting vasodilator tone and works to maintain a smooth and healthy vascular endothelium.

Dr. Pascal Bernatchez has uncovered a novel molecular approach that increases endothelial function and nitric oxide availability in aged vessels, while young vessels remain unaffected by the intervention. This suggests that there may be a molecular cause for how endothelial dysfunction develops. Bernatchez’s research will contribute to knowledge about how this approach restores endothelial function in an age-specific manner, how it regulates blood pressure and how endothelial dysfunction occurs. The findings may lead to novel therapeutic avenues for the range of cardiovascular diseases characterized by endothelial dysfunction.