An investigation of the basis of aminoglycoside resistance in the Burkholderia cepacia complex

Cystic fibrosis and chronic granulomatous disease are both life-threatening genetic disorders. Cystic fibrosis is the most common life-shortening genetic disorder affecting Caucasians, with the median survival age being only about 37 years in North America. A genetic mutation results in the buildup of sticky, dehydrated mucus in the airways of the lungs, leading to an inability to clear many microorganisms. The resulting persistent infections gradually destroy lung function. Individuals with chronic granulomatous disease are also susceptible to chronic bacterial and other infections, because a genetic mutation impairs the protective functions of certain immune cells, causing them to be unable to effectively kill infectious organisms. A group of bacteria that commonly cause severe and fatal infections in these patients is the Burkholderia cepacia complex (BCC). These bacteria represent a significant threat because they are highly resistant to many antimicrobial drugs. Recently, researchers in Agatha Jassem’s lab discovered B. vietnamiensis bacteria, a member of the BCC, which are sensitive to a particular group of antibiotics called aminoglycosides. This presents an opportunity to undertake comparative studies between drug resistant and susceptible strains of the BBC. Jassem believes the outer cell wall permeability of the newly discovered B. vietnamiensis bacteria may be responsible for its susceptibility to the aminoglycosides group of antibiotics. To establish this, she is first evaluating the level of resistance of the B. vietnamiensis bacteria to a variety of antibiotics. Then, she is carrying out molecular studies of the outer cell wall of these bacteria to clarify the mechanisms that affect their permeability and thus their susceptibility or resistance to antibiotics. Ultimately, Jassem hopes her research will lead to the development of new therapies for treatment in cystic fibrosis and chronic granulomatous disease.