Microfluidic Instrumentation for Single-Cell Chemical Genetics

Healthy cell behavior, cell differentiation and disease progression are all governed by complex protein interactions and regulatory networks across different cells. Unraveling the specific, time-dependent chain of events within cells has proven challenging for several reasons. First, diversity in cell types and the cumulative effects of past cell history mean that cells may vary in their response to chemical environments. Additionally, conventional methods of cell analysis are generally restricted to averaging measurements of large populations of cells, or analyzing cell response at a single point in time. Because these ensemble measurements and snapshots obscure persistent and time-dependent behaviour, deciphering the underlying molecular mechanisms of cellular response is difficult. A deeper understanding of such pathways is essential to the advancement of fundamental biological research, to the diagnoses of disease, and to the development of medical interventions. New technologies are needed to enable continuous monitoring of large numbers of single cells, subject to precisely-controlled sequences of chemical stimuli. Recent developments in micro-fabrication technology has led to micro-scale cell culture “chips”, with features similar to electronic micro circuits. Thousands of microscopic channels and valves can be tightly integrated into powerful biomedical sample processing devices the size of an iPod. Dr. Carl Hansen will focus on maximizing these state-of-the-art systems to develop new instrumentation capable of rapidly analyzing thousands of isolated single cells exposed to precisely defined and time-varying chemical conditions and drugs. Experimentation at the single cell level will accelerate fundamental biomedical research and will ultimately improve both our understanding of, and our ability to treat, disease. The ability to precisely manipulate and interrogate single cells will find broad application in health research fields including cancer biology, regenerative medicine, and drug development.