Organelle signalling in stem cell identity specification

Stem cells offer tremendous potential for tissue regeneration and uncovering causes and treatments for many human diseases. Technologies developed over the past decade now allow us to grow human stem cells in the lab and manipulate them to carry disease-causing gene mutations and turn them into any cell type of interest. My lab's research uses these powerful tools to identify important regulators of stem cell function, particularly as they develop into cell types relevant to brain disorders. We focus on identifying the biological processes that build our brains, and biomarkers and treatment approaches for diseases. Though the genes that regulate stem cell function are fairly well know, the impact of cell organelles, which coordinate many biological functions and are potential targets for treatment, is poorly understood. My lab is working to bridge this gap by investigating the impact of vesicle-like organelles called lysosomes on brain stem cells. Our data suggests lysosomes are critical regulators of stem cell function and brain development. Given new imaging-based tools and clinically approved lysosome-targeted drugs, studying the role of lysosomes can transform our potential to understand, diagnose, and treat brain disease.