Probing the preparation and preprogramming of voluntary movements using startle in healthy humans and clinical populations

Every day people are required to make quick, voluntary responses to environmental signals, such as sound. The higher brain (cerebral cortex) has long been thought to control these movements by receiving and analyzing sensory information and coordinating responses. But Anthony Carlsen’s research has shown reactive movements can be stimulated more quickly with a loud, startling sound at 124 decibels. The research suggests it may be possible to pre-program these quicker responses and store them in the midbrain, the area that controls auditory and visual reflexes. Anthony is using Functional Magnetic Resonance Imaging (fMRI) to determine if there is brain activity with pre-programmed responses in the midbrain. He is also testing whether the startling sound triggers a midbrain response in people with Parkinson’s disease and those who become deaf following a stroke. Results from the study could provide insights about human motor control, the source of movement deficiencies caused by Parkinson’s, and potential treatments for people with Parkinson’s and cerebral deafness.