The role of notch activation in VEGF-mediated tumour angiogenesis

A major step for cancer cells to form solid tumours and metastasize (spread to other parts of the body) is the development of new blood vessels around the tumour, a process called angiogenesis. Angiogenesis is essential for delivering nutrients that help tumour cells grow and survive. Blocking this process has been shown to inhibit the growth and spread of cancer in animal models, and early angiogenesis-blocking drugs have shown promise in human clinical trials. Still, much work remains to improve these treatments and better target tumour angiogenesis without affecting normal blood vessels. An important piece of this research is to develop a more complete understanding of how cancer cells “hijack” blood vessels to induce this process. Dr. Alexandre Patenaude’s research focuses on the molecular signals that cancer cells produce to recruit the vascular cells required for angiogenesis. He is studying two important factors: the notch protein and vascular endothelial growth factor (VEGF). VEGF is produced by cancer cells to induce the proliferation of the cells that assemble into blood vessels. Notch regulates how the blood vessels form, thereby allowing blood flow to circulate efficiently. Alexandre is also studying the role of these factors in the creation of pericytes, specialized cells that support the endothelial cells and help keep blood vessels open. This research will provide a better understanding of how blood vessels are hijacked by tumour cells. It could also suggest new ways to block this process, such as by inhibiting the generation of pericytes.