Signalling pathways that control the development and function of T regulatory cells

Autoimmune diseases, such as inflammatory bowel disease, multiple sclerosis, rheumatoid arthritis and psoriasis, arise from an overactive immune response against one’s own substances and tissues. If this overreaction against the body persists for an extended period of time, it results in chronic inflammation. Currently, there are no cures for autoimmune diseases; at best there are only treatments that mildly alleviate the symptoms. A patient with an autoimmune disease is typically treated with drugs to suppress the immune system, which diminishes immune responses in general. This type of treatment means that the individual becomes susceptible to infection and cancer as their immune system is effectively turned off. Dr. Scott Patterson's research project focuses on an immune cell called a T regulatory cell (Treg). These cells have the ability to suppress immune responses and normally prevent autoimmune diseases. Since the method by which Tregs turn immune responses off is not clearly understood, Dr. Patterson's goal is to characterize the molecular mechanisms that allow Tregs to work. In parallel, he will study how Tregs interact with other types of immune cells. Using animal models of inflammatory bowel disease and multiple sclerosis, this work will investigate the interactions Tregs have with immune cells in the body during autoimmune diseases. Gaining a greater understanding of how the actions of Tregs are controlled will be a big step in developing new therapies for autoimmune diseases and reducing the dependency on non-specific immunosuppressive drugs. Inflammatory bowel disease and diabetes each affect more than 200,000 people in Canada alone; thus, this research aims to improve the quality of life for this segment of the Canadian population.