Translational TB Research: Identification of Novel Drug Targets and Development of Protective Vaccines

A recent report from the World Health Organization revealed that about 1.5 million people died from TB in 2006. In addition, another 200,000 people with HIV died from HIV-associated TB. Current strategies aim to reduce the annual death toll from TB to less than 1 million worldwide by 2015, as set out in the United Nations Millennium Development Goals. Infection by the Mycobacterium tuberculosis microorganism causes TB. The current global strategy for TB control is based on reducing the spread of infection through massive vaccination campaigns with the BCG (bacille Calmette-Guérin) vaccine, and treatment of individuals with active disease using multi-drug combinations. However, there are challenges to this approach, including inefficiency of the BCG vaccine, the emergence of drug resistant strains of Mycobacterium tuberculosis (Mtb) and the difficulty in delivering a treatment that requires multiple drugs over periods of six months or more.

Until recently, little was known about how Mtb alters the host immune system to cause infection. Through Dr. Zakaria Hmama’s work as an MSFHR Scholar over the past six years, important new knowledge has been developed regarding the sub-cellular and molecular mechanisms of host/pathogen interactions. His research over the next five years will focus on gene manipulation technologies to upgrade the current BCG vaccine with recent immunological concepts to maximize its protective properties. Hmama is also investigating an important virulence factor identified by his lab as a potential drug target for TB treatment.