The effect of co-led mutual support groups in long-term care facilities on well-being

The social relationships that residents form within long-term care facilities (LTCF) are believed to buffer them from loneliness and depression to a greater degree than relationships with family and friends outside of facilities. Furthermore, support from friends and social groups has been associated with positive outcomes for older people living with chronic and serious health conditions. Traditional social activities in LTCF are not usually led by residents and are often passive entertainment programs that don’t provide the necessary supportive environment for residents to interact beyond surface social interactions. These activities are not usually grounded in research evidence, and some programs intended to foster resident well-being actually have adverse effects, including the perception among residents that activities offered are “childlike.” Currently, there is a lack of research evidence showing the benefits of specific social activity programs provided to residents in LTCF. One aspect of particular interest is the use of co-led self-support groups, which aim to enhance residents’ sense of belonging, self-development and self-determination. In this format, an activity staff member co-leads the groups with a resident group member, and acts in the role of a facilitator in order to assist with any special needs of the residents. Kristine Theurer is studying the benefits of co-led mutual support groups. Her assessments of resident well-being will be based on measures of sense of belongingness, loneliness, life satisfaction and happiness. From her findings, she will provide recommendations for co-led group formation, number of participants, suggested theme topics and supportive materials. Ultimately, her work will help LTCF provide appropriate evidence-based programming that supports residents to achieve a better quality of life.

Making Outreach Matter: Exploring Interventions and Decision-Making for Two Intravenous Drug User Populations in Vancouver’s Downtown Eastside

Within the intravenous drug user (IDU) population of Vancouver’s Downtown Eastside (DTES), female commercial sex workers and Aboriginal women are overrepresented. These two groups are especially vulnerable to unique sets of health and social challenges that may be related to their substance dependency, including increased susceptibility to sexually transmitted infections, physical violence, psychological trauma and malnutrition. Their social challenges can include increased contact with law enforcement, lower education, unemployment and inability to access community support. The needs of these two groups both intersect and diverge based on a series of factors. There are currently numerous services and interventions that target intravenous drug using women, including emergency mental health counselling, addictions treatment and recovery, harm reduction (both for IDU and commercial sex work) and general support groups. However, the rates of use of these services by commercial sex workers and Aboriginal women are relatively low. This suggests that many women either choose not to or cannot make use of the available health services and interventions. In order for these interventions to effectively help these two groups of women in coping with deeply interconnected health and social challenges, these factors must be investigated, addressed and understood within a complex matrix. Ashley White is conducting an in-depth study to explore the characteristics, perceptions of health services, and needs of commercial sex workers and Aboriginal women practising intravenous drug use. Her findings will provide essential insight into potential ways that health planners can offer accessible services that better meet the requirements of these women.

Dissection of O-glycosylation of nuclear and cytoplasmic proteins

The recent decoding of the human genome surprisingly revealed that humans possess a relatively small number of genes. Yet despite this apparently small number, we are rather complex beings. Genes are a special code that can be read out to form proteins, which are responsible for the vast majority of biochemical process within our bodies. This apparent inconsistency between the number of genes and the complexity of humans can be, in part, accounted for by various ‘post-translational modifications’ of human proteins. These types of modification are often additional molecule groups that are added onto certain positions in the protein and can change its activity. Dr. Tracey Gloster is interested in a modification where there is addition and removal of a sugar called ‘N-acetylglucosamine’. Disruptions to this modification are implicated in conditions such as diabetes, cancer and neurodegenerative diseases. The enzyme responsible for adding the N-acetylglucosamine modifies a large number of completely different target proteins. Little is known about how the enzyme recognizes its targets and modifies them at the correct position to ensure they carry out their proper function. Gloster is investigating a specific domain on this enzyme that could hold the answer. There are multiple sites on this interacting domain which she believes each recognize different sets of target proteins. By finding proteins that are modified by this protein and determining the exact region of the target protein that binds to the enzyme, it may be possible to block the enzyme’s action. This could open up new therapeutic approaches in the treatment of diabetes and other diseases.

Yeast oxysterol binding proteins and the cholesterol dependent regulation of Rho-GTPase mediated polarized cell growth

Heart disease is the leading cause of death for Canadians. More than one million Canadians currently live with this chronic disease and every year, more than 81,000 die. A major contributor to heart disease is cholesterol. Ironically, even though too much cholesterol is bad for our health, it cannot be completely removed from our bodies because it is essential for human life. Controlling dietary cholesterol is not always enough to reduce cholesterol levels in the body since our cells can also produce their own cholesterol. Loss of cholesterol regulation in our bodies not only leads to heart disease, it is also causes problems inside cells that can lead to other disease states. In fact, recent studies showed that the use of cholesterol-reducing drugs not only lowered cholesterol, they also decreased the incidence of breast cancer in Canadian women by 74 per cent. Recently, a group of cholesterol-binding proteins were identified and have been shown to mediate many of the functions linked to cholesterol. Gabriel Alfaro is using microscopy, biochemistry, and genetics to determine the mechanisms underlying how these proteins affect cholesterol regulation and mediate cellular functions. His research uses baker’s yeast as a model system, since the regulation of cholesterol in yeast is similar to its regulation in humans. Gabriel Alfaro’s research will enhance our understanding of the role cholesterol plays in the cell, and potentially point to new drug targets that could have fewer side effects relative to the current broad spectrum cholesterol inhibitors. Furthermore, his research will help elucidate the mechanism underlying cholesterol-related diseases

Studies toward the total synthesis of the analgesic natural product chimonanthine and its analogues

A major area of concern for Canada’s health system is the treatment of chronic pain, which affects more than 18 per cent of Canadians and costs the health system close to $10 billion per year. More people are disabled by chronic pain than cancer or heart disease. New structurally-novel analgesics (painkillers) with unique modes of action have proven promising. One class of these molecules are the pyrrolidinoindolines, which are alkaloids (naturally occurring compounds produced by living organisms, many known for their medicinal properties). The alkaloid (-)-chimonanthine has recently been extracted from the leaves of the wintersweet, a flowering plant originating from China. This compound has been found to exhibit analgesic effects. Unlike other opiods, such as cocaine, heroin, morphine, and codeine, chimonanthines do not possess addictive properties. Using novel techniques in synthetic chemistry, Baldip Kang is working to synthesize (-)-chimonanthine. This work is a precursor to developing analogues for this compound – drugs that differ in minor aspects of molecular structure from the parent drug, synthesized so that they have more potent effects or fewer side effects. He’s focusing on determining the most efficient and cost-effective way to synthesize the molecules. He and colleagues will collaborate with a pharmaceutical company to test the analogues in pre-clinical trials, determining modifications to the structure that will further enhance the drug’s effectiveness. Through the efficient synthesis of (-)-chimonanthine and its analogues, Kang’s research promises new ways to treat chronic pain ailments.

Spinal cord segmentation and analysis for understanding multiple sclerosis

The spinal cord is a key component of the central nervous system, acting as a relay to convey information between the brain and the rest of the body. A number of diseases affect the spinal cord, including multiple sclerosis (MS). MS affects more than 240 Canadians per 100,000, and is suspected of shrinking the spinal cord. In fact, recent studies have shown a strong correlation between spinal cord atrophy and disability related to the advancement of the disease. Spinal cord analysis, conducted with magnetic resonance imaging (MRI), is an important tool for detecting and measuring disease progression. This requires cross-sectional segmentation of the image, where specific points that correspond to the spinal cord are identified and measured over time. Most current methods require some manual intervention by radiologists; this is time-consuming and increases variability in the measurements. Chris McIntosh creates software for accurately analyzing tubular structures in the body – such as blood vessels and airways – using MRI and computed tomography. His current focus is on employing MRI to accurately measure and analyze spinal cord atrophy in patients with MS. Building on a preliminary study on automatic spinal cord segmentation, McIntosh is fine tuning the technology through additional validation, ensuring the results correspond with clinical measurements. He will then segment larger data sets with minimal user-interaction and perform analysis to see if the findings correlate with disease progression. A fully-automatic, computerized system would reduce variability seen with manual intervention, resulting in more accurate and useful spinal cord analysis. It also has the potential to free up radiologists’ time for other clinical work.

The role of active participation in the development of perspective taking in children with and without autism

Autism and its related disorders are characterized by widespread abnormalities of social interactions and communication, as well as severely restricted interests and repetitive behaviours. These disorders are described as lying on a continuum of severity, referred to as the autism spectrum, reflecting the diversity of symptoms in children with autism. Studies indicate that one major commonality among children on the autism spectrum is an impairment in their understanding of other people’s perspective or point of view. This ability is seen as the major underlying process in children’s overall social functioning. Newly-developed theories of how children typically develop perspective taking have provided important insights for assisting children with autism to improve their social understanding. However, while intervention programs are aimed at improving children’s social competence through increasing their ability to understand someone else’s point of view, the underlying mechanisms and effects on children’s ability to reason about other people’s perspectives are not well researched. Theo Elfers is investigating how perspective-taking develops by focusing on a specific aspect of social cognition — the role of children’s active engagement in perspective-taking tasks. Studying both children with and without autism, Elfers is giving the children structured tasks that allow the child to take both perspectives in a social exchange (e.g., gift giver and gift receiver), while allotting enough time for the child to remember each perspective and prompting the child to anticipate the other’s perspective. Ultimately, this work should provide researchers and mental health professionals with insights into how perspective-taking develops, and also increase the effectiveness of future training programs aimed at fostering social competence in children on the autism spectrum.

Neurophysiological markers of the control and deployment of attention in healthy individuals and individuals with attentional deficits

In order to successfully interact with the world around us, we need to be able to focus our attention on a particular object or location, move our attentional focus from one location to another, and suppress distracting information. A number of areas of the brain have been identified as part of a network of brain regions that work together to accomplish these complex cognitive processes, but there is still very little known about how these brain areas work together to control attention. A number of neuropsychological disorders, including attention deficit hyperactivity disorder (ADHD), dyslexia, schizophrenia, and depression are accompanied by deficits in the ability to focus attention and suppress distracting information in the environment. These deficits appear to originate from different underlying causes within the overall network of brain regions responsible for attention. Jessica Green is working to identify the brain areas responsible for our ability to pay attention, and determining how these brain areas interact in healthy individuals. She will then use this baseline knowledge to explore the neural basis of attentional deficits. Using electroencephalography (EEG), Green is capitalizing on recently-developed techniques for localizing the neural sources of the EEG. She will determine not only which brain areas are involved in shifting our attention between locations in space, but also how the activity changes over time as these brain areas interact with one another. In particular, she seeks to determine whether dyslexia arises from changes in attentional processing and, if so, which brain areas and connections between brain areas are affected. A better understanding of the neural basis of attentional deficits will potentially aid in the more efficient and appropriate diagnosis and treatment of these deficits.

The neural correlates of cognition in depression

Recent data suggest that 1.5 million Canadians, or 12 per cent of the population, will experience an episode of major depression at some point in their lives. For many, depression often becomes a chronic illness, with recurrent episodes. Cognitive neuroscience researchers are currently examining networks in the brain that are involved in depression, in the hope of developing better treatments and therapies for this devastating disease. MSFHR previously funded Fern Jaspers-Fayer for her Master’s research on the electrical brain activity changes associated with Seasonal Affective Disorder (SAD). For her PhD work, Jaspers-Fayer is continuing her studies in this area. She has studied the timing and location of electrical brain signals from electroencephalograms (EEGs) that were recorded from people with symptoms of depression while they completed a number of cognitive tests. She found that although everyone pays more attention to negative events than positive ones, people with low mood will go on to ruminate about these events. This contemplation, which may become persistent and brooding, then affects how they behave. Using new techniques to localize these effects in the brain, Jaspers-Fayer is now disentangling both when and where in the brain the process of rumination begins and what conditions increase the likelihood and the duration of rumination. Jaspers-Fayer’s work will ultimately lend knowledge to our understanding of the underlying cognitive mechanisms involved in emotion, helping to pinpoint the timing and activation of brain areas involved in depression. Her research in rumination could potentially inform new approaches and therapies for treating depression.

Spatial epidemiology of trauma: understanding and preventing injury through geographic analysis

Over the course of the last two decades, the notion that health and well-being is tied to societal and environmental circumstances that may overlap and intersect with important elements of individual experiences has been widely utilized as a means of characterizing the inequitable distribution of a wide range of health outcomes, including injuries. Importantly, the population health perspective model is transforming how we understand the complex interaction between the environment and injuries, and tailoring prevention and policy responses to address the inequitable distribution of their occurrence. Yet, there are currently no frameworks in place for how we quantify the interconnectivity between social, environmental, and geographical determinants of injury and building evidence that highlights the underlying relationship between all three factors with injuries. Addressing the ecological and geographical questions regarding this complex interaction entails integrating the current injury prevention models with the tools and analysis functions of geographic information systems (GIS). GIS are widely recognized as essential tools in public health promotion and surveillance as they allow for the integration of multiple data sources and the visual and spatial analysis of health data in relation to locations, distances, or proximities. GIS can increase our understanding of current population access to emergency medical services, the extent that injuries ‘cluster’ in certain areas and among certain population groups, as well as help researchers better understand and locate the links between people and their environments that may either reduce or increase injury risk. Nathaniel is currently applying GIS in a number of research areas in order to determine where important systems elements might be augmented to improve population access to critical care, for identifying incidence patterns that might have gone under noticed had they not been examined using GIS, as well as how this technology might be used to help researchers more accurately target prevention efforts to reach communities in-need. This research will help structure ongoing injury prevention efforts in British Columbia as well as provide future researchers with a number of frameworks for using GIS to improve our understanding of the societal, environmental, and geographic factors associated with injury.