Computational analysis and modeling of the Myelin Basic Protein gene regulation

Principal Investigator: 
University: 
University of British Columbia
Award Type: 

Faulty gene regulation is implicated in a wide variety of diseases. Gene regulation is the process cells use to translate genetic information into proteins (gene expression) which control (regulate) all aspects of cell growth and function. The myelin sheath is a soft, white insulating layer that forms around nerve cells and enables rapid, efficient transmission of nerve impulses. Myelin basic proteins (MBP) are required for normal myelin compaction in the central nervous system, and alterations in MBP gene expression may be implicated in debilitating human myelin disorders such as multiple sclerosis. Debra Fulton is collaborating with scientists at McGill University in Montreal to develop a computation model of MBP gene expression. This will include the development of a database to house and support detailed interrogation of experimental inputs, outputs, and interactional relationships. Illumination of the gene regulation program governing MBP gene expression is fundamental to the discovery of regenerative therapies that encourage the stabilization of myelin, or initiate myelin repair after injury. A detailed investigation focused on learning how transcription of this gene is activated or repressed is one means to unravelling the regulatory program.

Research Pillar: 
Host Institution: 
University of British Columbia
Research Location: 
Child & Family Research Institute
Co-Supervisor: 
Wyeth Wasserman
Year: 
2006