Imaging Early Micro-Structural Bone Changes in the Rheumatoid Hand: A High Resolution-Peripheral Computed Tomography (HR-pQCT) Study in People with Newly Diagnosed RA

Principal Investigator: 
University of British Columbia
Faculty of Medicine
Physical Therapy
Award Type: 

Rheumatoid Arthritis (RA), affects one percent of the general population. Radiographic (x-ray), evidence of bone thinning (osteoporosis), and bony destruction (erosions), in the bone surrounding inflamed joints is an important diagnostic criterion for RA. These changes are present in the hands and feet of 80 percent of people with RA and can have profound implications with regard to the development of hand deformity, functional limitations and the need for restorative joint surgery. Early presentation of destructive bone changes is associated with a more aggressive disease progression and evidence suggests that starting disease-modifying anti-rheumatic drugs (DMARDs), soon after the diagnosis of RA may help prevent some people from developing bone damage. However, not all people with early RA respond to DMARDs, with 'non-responders' requiring more aggressive interventions including trials of combinations of different drug treatments or biologic response modifier drugs. Unfortunately, the time delay associated with implementing effective treatment in people with more aggressive or resistant RA means they are at greater risk for permanent bone damage. Current clinical imaging with Dual X-ray Absorptiometry (DXA), Computed Tomography (CT), and Magnetic Resonance Imaging (MRI), can detect bone damage earlier than x-ray but these tools are not able to identify the initial 'micro-structural' changes in the early RA hand. Dr. Lynne Feehan is characterizing early 'micro' structural hand bone changes over a two-year period in people with newly diagnosed RA using High Resolution - Peripheral Quantitative Computed Tomography (HR-pQCT), a promising new imaging system capable of imaging the very fine bone internal 'micro' detail at a resolution equivalent to the diameter of a human hair. The results of Dr. Feehan’s research could improve patient’s early access to appropriate therapy, and thereby improve their quality of life.

Research Pillar: 
Host Institution: 
University of British Columbia
Research Location: 
Vancouver Coastal Health Research Institute
Linda Li