Pathogen bioinformatics and the evolution of microbial virulence

Principal Investigator: 
University: 
Simon Fraser University
Faculty: 
Faculty of Science
Department: 
Department of Molecular Biology and Biochemistry
Award Type: 

Infectious diseases are responsible for roughly a third of annual deaths worldwide and contribute greatly to productivity loss. Antimicrobial resistance and newly emerging diseases are both cause for significant concern. With the advent of microbial whole-genome sequencing, there has been renewed optimism that computational analyses of microbial genomes will allow for faster identification of promising new therapeutic targets, which can then be further investigated with laboratory studies. At the moment, however, current computational practices are not accurate enough to be truly effective. Dr. Fiona Brinkman is interested in improving computational methods used to identify new potential bacterial vaccine components or drug/diagnostic targets. She is focusing in particular on improving identification methods for two regions: bacterial cell surface and secreted proteins, since they are the most accessible targets; and clusters of genes called genomic islands, which appear to disproportionately contain virulence genes and so could aid investigations of bacterial pathogenicity. Her research group is also studying the evolution of microbial virulence, both from the pathogen and host perspective, using bioinformatic approaches supported by laboratory studies. This work aims to develop methods and insights that may accelerate the identification of promising new targets from pathogen genomes. With the ability to analyze multiple infectious disease-causing microbes in parallel, this research has the potential to have a wide reaching impact on efforts to control multiple infectious diseases.

Research Pillar: 
Host Institution: 
Simon Fraser University
Research Location: 
Simon Fraser University
Year: 
2007